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Abstract—Almost all wireless communication sys-
tems today are designed based on essentially the same
digital approach, that separately optimizes the com-
pression and channel coding stages. Using machine
learning techniques, we investigate whether end-to-
end transmission can be learned from scratch, thus
using joint source-channel coding (JSCC) rather than
the separation approach. This paper reviews and ad-
vances recent developments on our proposed tech-
nique, deep-JSCC, an autoencoder-based solution for
generating robust and compact codes directly from
images pixels, being comparable or even superior in
performance to state-of-the-art (SoA) separation-based
schemes (BPG+LDPC). Additionally, we show that
deep-JSCC can be expanded to exploit a series of
important features, such as graceful degradation, ver-
satility to different channels and domains, variable
transmission rate through successive refinement, and
its capability to exploit channel output feedback.

I. Introduction
Wireless communication systems have traditionally fol-

lowed a modular model-based design approach, in which
highly specialized blocks are designed separately based on
expert knowledge accumulated over decades of research.
This approach is partly motivated by Shannon’s separation
theorem [1], which gives theoretical guarantees that the
separate optimization of source compression and channel
coding can, in the asymptotic limit, approach the optimal
performance. In this way, we have available today highly
specialized source codes, e.g., JPEG2000/BPG for images,
MPEG-4/WMA for audio, or H.264 for video, to be used
in conjunction with near-capacity-achieving channel codes,
e.g., Turbo, LDPC, polar codes.

However, despite its huge impact, optimality of sepa-
ration holds only under unlimited delay and complexity
assumptions; and, even under these assumptions, it breaks
down in multi-user scenarios [2], [3], or non-ergodic source
or channel distributions [4], [5]. Moreover, unconventional
communication paradigms have been emerging, demand-
ing extreme end-to-end low latency and low power (e.g.,
IoT, autonomous driving, tactile Internet), and operating
under more challenging environments that might not fol-
low the traditional models (e.g., channels under bursty
interference).

In light of above, our goal is to rethink the problem
of wireless communication of lossy sources by using ma-
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Fig. 1. Machine learning based communication system.

chine learning techniques, focusing particularly on image
transmission. For this, we replace the modular separation-
based design with a single neural network component for
encoder and decoder (see Fig.1 for an illustrative diagram),
thus performing JSCC, whose parameters are trained from
data, rather than being designed. Our solution, the deep-
JSCC, is applied to the problem of image transmission
and can learn strictly from data in an unsupervised man-
ner, as we model our system as an autoencoder [6], [7]
with the communication channel incorporated as a non-
trainable layer. This approach is motivated by the recent
developments in machine learning through the use of
deep learning (DL) techniques, and their applications to
communication systems in recent years [8]. Autoencoders,
in particular, due to the similarity between its architecture
and digital communication systems [9], [10] have been
used in related problems and pushing the boundaries of
communications [11]–[16]. The use of DL for the separate
problems of channel coding and image compression have
been showing promising results, achieving performance in
some cases superior to handcrafted algorithms [17], [18].
We show, however, that by performing JSCC, we can
further improve the end-to-end performance.

This paper reviews different features that were shown
to be achieved with deep-JSCC, namely (a) performance
comparable or superior to SoA separation-based schemes;
(b) graceful degradation upon deterioration of channel
conditions [19]; (c) versatility to adapt to different channels
and domains [19]; (d) capacity of successive refinement [20]
and (e) ability to exploit channel output feedback in order
to improve the communication [21]. Thus, deep-JSCC
presents itself as a powerful solution for the transmission
of images, enabling communications with excellent per-
formance while achieving low-delay and low-energy, being
robust to channel changes, and allowing small and flexible
bandwidth transmissions, thus advancing the field of com-
munications by improving existing JSCC and separation-
based methods.
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Fig. 2. Encoder and decoder architectures used in experiments.

II. Problem Formulation and Model Description
Consider an input image with height H, widthW and C

color channels, represented as a vector of pixel intensities
x ∈ Rn; n = H ×W × C to be transmitted over k uses
of a noisy channel, where k/n is the bandwidth ratio. An
encoder fθi

: Rn → Cki maps x into channel input symbols
zi ∈ Cki in L blocks, where

∑L
i=1 ki = k. These symbols

are transmitted over a noisy channel, characterized by a
random transformation η : Cki → Cki , which may model
physical impairments such as noise, fading or interference,
resulting in the corrupted channel output ẑi = η(zi). We
consider L distinct decoders, where the channel outputs
for the first i blocks are decoded using gφi

: CkI → Rn
(where I =

∑i
j=0 kj), creating reconstructions x̂i =

gφi(ẑ1, . . . , ẑi) ∈ Rn, for i ∈ 1, . . . , L.
The encoder and decoder(s) are modelled as fully convo-

lutional networks, using generalized normalization trans-
formations (GDN/IGDN) [22], followed by a parametric
ReLU (PReLU) [23] activation function (or a sigmoid, in
the last decoder block). The channel is incorporated into
the model as a non-trainable layer. Fig. 2 presents the
architecture and the hyperparameters used in the experi-
ments. Before transmission, the latent vector z′i generated
at the encoder’s last convolutional layer is normalized to
enforce an average power constraint so that 1

ki
E[z∗i zi] ≤ P ,

by setting zi =
√
kiP

z′i√
z
′∗
i

z′
i

. The model can be optimized

to minimize the average distortion between input x and its
reconstructions x̂i at each layer i:

(θ∗i , φ∗i ) = arg min
θi,φi

Ep(x,x̂)[d(x, x̂i)], (1)

where d(x, x̂i) is a specified distortion measure, usually
the mean squared error (MSE), although other metrics are
also considered. When L > 1, we have a multi-objective
problem. However, we simplify it so that the optimization
of multiple layers is done either jointly, by considering a
weighted combination of losses, or greedily, by optimizing
(θi, φi) successively. Please see [20], [21] for more details.
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Fig. 3. Deep-JSCC performance compared to digital schemes.

III. Deep-JSCC
Our first set of results demonstrate the base case when,

an image x is encoded by a single encoder and a single
decoder, thus L = 1. We consider a complex AWGN
channel with transfer function given by:

ηn(z) = z + n, (2)

where n ∈ Ck is independent and identically distributed
(i.i.d.) with n ∼ CN (0, σ2I), where σ2 is the average
noise power. We measure the quality of the channel by
the average signal-to-noise ratio (SNR) given by SNR =
10 log10

1
σ2 (dB) when P = 1 and the systems’ perfor-

mance by the peak SNR (PSNR), given by PSNR =
10 log10

2552

||x−x̂i||2 (dB).
Fig. 3 compares deep-JSCC with other well estab-

lished codecs (BPG, JPEG2000, WebP, JPEG) followed by
LDPC channel coding (see [19], [24] for more information
on the experimental setup, dataset and alternative schemes
considered). We see that the performance of deep-JSCC is
either above or comparable to the performance of the SoA
schemes, for a wide range of channel SNRs.

These results are obtained by training a different en-
coder/decoder model for each SNR value evaluated in the
case of deep-JSCC, and considering the best performance
achieved by the separation-based scheme at each SNR. In



0 5 10 15 20 25
SNRtest (dB)

15

20

25

30

35

40

45

PS
N

R
 (d

B
)

AWGN Channel - Kodak -  k/n = 1/6

Deep-JSCC (SNRtrain=19dB)
Deep-JSCC (SNRtrain=7dB)
Deep-JSCC (SNRtrain=1dB)
BPG+LDPC

(a)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
p

15

20

25

30

35

Av
er

ag
e 

PS
N

R
 (d

B
)

Bursty Channel - k/n = 1/6

b = 0.5
b = 3.5

Deep-JSCC
BPG+LDPC

(b)

0 5 10 15 20 25
SNR (dB)

0.92

0.94

0.96

0.98

1.00

M
S_

SS
IM

AWGN channel - Eurosat - k/n = 1/12

Deep-JSCC (Optimised for MS-SSIM)
Deep-JSCC (Optimised for MSE)
BPG+LDPC

(c)
Fig. 4. (a) effects of graceful degradation for deep-JSCC compared to cliff effect in separation-based scheme; (b) performance of deep-JSCC
on a bursty interference channel (c) performance of deep-JSCC trained with MS-SSIM as objective function.

Fig. 4a, we experiment training models at a specific chan-
nel SNR, but evaluating it on several SNRtest values, also
for the separation-based schemes. It can be clearly seen
that deep-JSCC presents graceful degradation, that is, the
performance gradually decreases as channel deteriorates,
while the digital scheme presents a cliff-effect when the
quality of the channel goes below the capacity for which
the code was designed, losing all transmission output.
Thus, we can see that deep-JSCC not only produces high
performing transmissions, but also analog behavior, being
more robust to non-ergodic channels.

A. Versatility
A big advantage of deep-JSCC being data-driven is

the possibility of training for different channel models,
objective functions, or specific domains. Previous work
[19] show deep-JSCC is able to learn how to operate
on a Rayleigh fading channel, which models variations
in channel quality over time, due to physical changes in
the environment. Remarkably, the model could learn to
operate in a fading channel without the need of channel
estimation or feedback, which are both common practice
in separation-based systems.

We can also consider a channel with ‘bursty’ noise,
which can model the presence of a high variance noise
with probability p in addition to the AWGN noise n,
modeling in practice, an occasional random interference
from a nearby transmitter. Formally, this is a Bernoulli-
Gaussian noise channel with transfer function:

ηw(z) = z + n +B(k, p)w, (3)
where B(k, p) is the binomial distribution, and w ∼
CN (0, σ2

b I) the high variance noise component (σ2
b >> 0).

Fig. 4b shows the effect of the probability p on the
performance when the AWGN component’s SNR is 10dB.
We consider both a low-power (σb = 0.5) and a high-
power (σb = 3.5) burst, and compare the performance
with a digital scheme with BPG+LDPC. As expected, the
performance degrades as p increases, but deep-JSCC is
much more robust against the increasing power of the burst

noise. A high-power burst degrades the performance of the
digital scheme very quickly, even if the burst probability
is very low, completely destroying the signal when p >
0.15. Deep-JSCC exhibits graceful degradation even in the
presence of bursty noise, another important advantages in
practical scenarios, particularly for communications over
unlicensed bands, where occasional burst noise is common.

We also experimented training our model to a domain
specific task, namely the transmission of satellite image
data [25], a plausible application of our model. Here we use
the distortion measure of multi-scale structural similarity
(MS-SSIM) [26] – a widely accepted image quality measure
that better represents human visual perception than pixel-
wise differences. Our results, shown in Fig. 4c show that,
when considering more specific domains, our model can
better adapt to it, significantly increasing the performance
gap between deep-JSCC and separation-based schemes.

B. Successive Refinement
Yet another advantage of deep-JSCC is the flexibility

to adapt the transmission to different paths or stages.
Consider a model with L > 1, in which a same image is
transmitted progressively in blocks of size ki, i = 1, . . . L
and

∑L
i=1 ki = k. We aim to be able to reconstruct the

complete image after each transmission, with increasing
quality, thus performing successive refinement [27]–[29].
Progressive transmission can be applied to scenarios in
which communication is either expensive or urgent. For
example, in surveillance applications, it may be beneficial
to quickly send a low-resolution image to detect a poten-
tial threat as soon as possible, while a higher resolution
description can be later received for further evaluation
or archival purposes. Or, in a multi-user communication
setting, one could send different number of component for
different users, depending on the available bandwidth.

We therefore expand our system, by creating L encoder
and decoder pairs, each responsible for a partial transmis-
sion zi and trained jointly (see [20] for implementation
details and alternative architectures). Fig. 5a presents
results for the case L = 2, for k1/n = k2/n = 1/12 and
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Fig. 5. (a) Successive refinement with L = 2; (b) Layered transmission with channel output feedback, for L = 4; (c) Comparison between
simulated and hardware performance.

shows the performance of each layer for different channel
SNRs, for the AWGN channel. Results show that the loss
of dividing the transmission into multiple stages is not
significant; when compared to a single transmission with
k/n = 1/6 (dotted black curve in Fig. 5a), the model
performs with approximately the same quality for most
channel conditions. Moreover, we observe that every layer
of the layered transmission scheme preserves all features of
the single transmission, such as graceful degradation and
adaptability to different channel models.

C. Channel Output Feedback

Another interesting direction to be explored by deep-
JSCC is the use of channel output feedback, when it is
available. Suppose that alongside the forward communi-
cation channel considered so far, there is also a feedback
channel, able to send back to the transmitter an estimation
of the channel output z̃i after its realization. In a multi-
layered transmission, this information can be used to
inform subsequent layers and enhance the reconstruction
at the receiver. Thus, a transmission of a source x is done
sequentially in L steps, in which each step i a channel
input zi is generated from input x and feedback z̃i−1 (for
i > 1), transmitted and decoded to generate successively
refined representations x̂i (see [21] for specific architecture
and implementation details). There has also been recent
advances in the use of channel output feedback to improve
the performance of channel coding [30]; however, the de-
sign is for a specific blocklength and code rate, whereas the
proposed deep-JSCC scheme can transmit large content,
such as images.

Fig. 5b shows the results for a scenario considering
noiseless feedback (i.e. z̃i = ẑi) and three uses of the
feedback channel (L = 4), for channel inputs with size
ki/n = 1/12, i = 1, . . . , 4. We see that by exploiting the
feedback information, deep-JSCC can further increase its
performance, establishing its superiority to other schemes.
Note that we compare deep-JSCC with feedback with a
theoretical capacity achieving channel code, and can still
outperform the separation-based scheme.

This architecture enables other communication strate-
gies, such as variable length coding, in which a minimum
number of layers zi are transmitted and the quality of
the reconstruction is estimated through feedback, until a
target quality is achieved and the further transmission
is interrupted. This scheme can provide gains of over
50% in bandwidth, when compared to separation-based
approaches [21]. Further experiments also demonstrate
that our model successfully operates under noisy feedback
channels, and even present graceful degradation when the
feedback channel changes between training and evaluation.

D. Hardware Implementation
Finally, to validate the real world performance of the

proposed architecture, we implemented our basic deep-
JSCC on software defined radio platform. We used models
trained on the AWGN model, with different SNRs. Results
can be seen in Fig. 5c and show that the simulated
performance closely matches the hardware performance,
especially in higher SNRs.

We also analyzed the execution time of our model. We
observed that the average encoding and decoding time
per image with deep-JSCC is 6.40ms on GPU, or 15.4ms
on CPU, while a scheme with JPEG2000+LDPC and
BPG+LDPC takes on average 4.53 and 69.9ms respec-
tively. This shows that, although our model can be further
optimized for speed, it already presents competitive times,
given its outstanding performance.

IV. Conclusion
This paper reviewed and explored different features of

a DL-based architecture for JSCC of images over wireless
channels, the deep-JSCC. We have shown that our archi-
tecture is extremely versatile to channel models, objective
functions and even transmission configurations, being able
to perform multi-layered transmission and exploit channel
feedback. When compared to traditional digital schemes
of transmission, deep-JSCC has shown outstanding perfor-
mance in different metrics and scenarios, therefore present-
ing itself as a viable and superior alternative, particularly
for low-latency and low-power applications.
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